

Coding Error Detector for Manually-coded Activity Logs: Case Study with Endotracheal Intubation

INTRODUCTION: Some types of medical workflow data can be collected automatically (e.g. EHR data), but others still need to be collected manually (e.g. Surgical Workflow data). This manual coding inevitably introduces human error to the data. In this poster, we use data-driven anomaly detection algorithms to discover human coding errors in workflow data. We implemented the algorithm in a light-weight JAVA application, the Error Detector for Manually-coded Activity Logs. CED-MAL has three interactive functions (see (A), (B), (C)) to help users locate and interpret these coding errors. We also applied CED-MAL to a preliminary case study on a real endotracheal intubation dataset.

Case Study Dataset:

Our dataset for the endotracheal intubation process (breathing tube insertion) contains 94 patient cases with 1559 total activities. Each activity was manually labeled with one of 15 activity types, a start time, and an end time.

Outlier Detection Algorithms (Figure 1):

- Statistical approach: activities with durations or occurrence times beyond ± 2 standard deviations (std) of the average
- Density approach (KNN): activities with times that have k-nearest-neighbor distances beyond ± 2 std of the average knn distance
- Clustering approach (K-means): activity in small clusters and at the boundary of large clusters. Num. of cluster is based on silhouette value.

Figure 1. Examples demonstrating the three different anomaly detection algorithms

(A) Data Table View

This shows the imported workflow data. Each row includes an activity's information. The rows of the detected error candidates are highlighted. Users can directly modify the data in this table and output the corrected data with the "export" function. The chart panel above updates to the table's values in real time.

config Panel

Files:

Parameter Pane

actdurSTDb

actdurCLUSTb

acttimeSTDb

caseSTDbi

caseRANGEb

Results: Evaluating the detector required finding the actual errors. Because finding the true errors of the entire dataset would be too labor insensitive, we only fully evaluated CED-MAL on 30 cases (Table 1: 0.96 accuracy, 0.43 precision, 0.67 recall, 0.53 Fscore). In terms of the entire dataset, we found that CED-MAL achieved 0.43 precision (Figure 2). Limitations and Future work: Only timestamp coding errors are checked. The dataset may contain other error types (e.g. omitted/repeated encodings, activity name typos, etc.). In future work, we will extend CED-MAL to be a general anomaly detector. **Download**: GitHub Link: https://github.com/ShizuoZ/Human-Coding-Checker Acknowledgement: This research is supported by National Institutes of Health under grant number 1R01LM011834-01A1.

Sen Yang¹*, Yichen Zhou¹, Shuhong Chen¹, Alexis Sandler², Ivan Marsic¹, Randall S. Burd²

¹Rutgers University, Piscataway, NJ ²Children's Nat'l Medical Center, Washington, DC * Corresponding author email: forrest.yang@rutgers.edu

		Error E	Detection	
import	export Er	rorType:	Duration errors	
el			Chart Panel	
ond: -2.5 ond: -2 ond: -1.5 ond: -1.5	 2.5 insuffThresho 2.5 actdurknnma 2 actdurCLUSTte 1.5 acttimeKNNma 1.5 appl 	Id:30ax:2.5st:5ax:2yhide	2,000 1,500 1,000 500 -2	star
Activity Larvne	/ goscopv	Sta 4	arttime :29:37 AM	
RSI Se	dative Meds	4	:38:43 AM	
ET Tu	ET Tube Secured		:39:46 AM	

RSI Sedative Meds	4:38:43 AM
ET Tube Secured	4:39:46 AM
RSI Paralytic Meds	4:40:31 AM
Patient Arrival	4:48:00 AM
Patient Arrival	4:48:00 AM
Patient Arrival	4:48:00 AM
Chest Auscultation	4:48:55 AM
Chest Auscultation	4:48:55 AM
Chest Auscultation	4:48:55 AM
Breathing Verbalized	4:49:09 AM
Breathing Verbalized	4:49:09 AM
BVM	4:50:05 AM
BVM	4:50:05 AM
BVM	4:50:06 AM
Chest Auscultation	4:51:36 AM
Chest Auscultation	4:51:37 AM

