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Abstract. Objective: To develop an algorithm for aligning process traces that 

considers activity duration during alignment and helps derive data-driven 

insights from workflow data. Methods: We developed a duration-aware trace 

alignment algorithm as part of a Java application that provides visualization of 

the alignment. The relative weight of the activity type vs. activity duration 

during the alignment is an adjustable parameter. We evaluated proportional and 

logarithmic weights for activity duration. Results: We used duration-aware 

trace alignment on two real-world medical datasets. Compared with existing 

context-based alignment algorithm, our results show that duration-aware 

alignment algorithm achieves higher alignment accuracy and provides more 

intuitive insights for deviation detection and data visualization. Conclusion: 

Duration-aware trace alignment improves upon an existing trace alignment 

approach and offers better alignment accuracy and visualization. 

1 Introduction 

Many contemporary information systems record activity logs, including online 

shopping habits, personal calendars and electronic health records (EHR). Process 

mining techniques aim to extract knowledge and insights from these types of logs [1]. 

Most research in process mining has focused on workflow discovery using process 

model analysis (e.g., conformance checking [1]) and deviation discovery based on 

these models. Bose and Van der Aalst [2] derived a trace alignment from the multiple 

sequences alignment (MSA) algorithm in bioinformatics [3] and used it to gain 

insights from activity logs. Trace alignment places the same or similar activities in the 

same column of the alignment matrix. If a matching activity cannot be found, a gap 

symbol “-” is inserted. For example, given a trace with activities {a,c} and a trace 

with activities {a,b,a,c}, two possible alignments are: 
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Trace alignment can be used to find similarities within a group of traces and to 

determine how a given trace differs from the well-established work practice. Trace 



alignment can also help identify conserved patterns of activities and deviations from 

the norm. 

Existing trace alignment approaches consider only the sequential order of activities 

and ignore activity duration. Activity duration may, however, be an important 

parameter for some processes. For example, consideration of duration helped 

understand that nurses routinely switch between tasks, spending less time on 

interrupted tasks that are later resumed [21]. To consider activity duration during 

alignment when finding a matching activity in another trace, the duration may need to 

be part of similarity calculation. Activities of the same type and comparable durations 

should be assigned high similarity. Markedly different durations of the same activity 

type may indicate deviations and can be expected to have a lower similarity [23]. 

Activity duration can also help improve alignment accuracy by identifying deviations 

in the process execution. Activities with a typical duration suggest normal operation 

while activities with unusual durations indicate difficulties or atypical performance 

[24]. Additionally, activity duration may be linked with activity importance, i.e. task 

importance can vary based on situation and may require more time and effort when 

more integral to the process. Finally, visualizing the trace alignment result 

incorporating durations helps users detect duration-related deviations in activity 

performance that otherwise would not be evident. 

To consider activity duration as a parameter in trace alignment, we extended the 

classic Needleman Wunsch algorithm (NW) [4] used for aligning biological 

sequences, to include a cost for activity. Because a process execution can be 

considered as a sequential data on the timeline, one may expect that the alignment of 

traces with activity durations can be solved by Dynamic Time Warping (DTW) [5], 

an algorithm used in signal processing and pattern recognition to align time-series 

sequences. The standard DTW algorithm, however, does not explicitly penalize the 

difference in activity durations between aligned activities of the same type. A 

variation of DTW called Distortion Penalized DTW or Variable Penalty DTW 

[8][25], was developed to address this issue by introducing the time-distortion penalty 

to penalize the expansion and contraction of the original sequence. Our preliminary 

experimental results, however, showed that even the distortion-penalized DTW could 

not produce the alignment results as expected. To perform the distortion-penalized 

DTW, we discretized the time axis and displayed each activity as function of time 

over one or more time steps. This uniform slicing produces multiple contiguous 

segments for each activity, each segment being one unit of time long, that are treated 

as independent points during the DTW time-warping. Consider a trace T1 with 

activities {a, c} where a lasted three time units and c lasted one time unit, and another 

trace T2 with activities {a, b, a, c} where all lasted one time unit (Fig. 1(a)). After 

time discretization, activity a in T1 is split in three discrete-time segments 

{a1, a2, a3} (Fig. 1(b)). Alignment of segments from one trace is attempted with 

segments from the other trace, without considering that adjacent segments may be 

part of the same activity. As a result, segments of one long-duration activity in one 

trace may be aligned with several short-duration activities in the other trace. In our 

example, after the alignment, the first and third segments of activity a in T1 will be 

separately aligned with the two different activities of type a in T2. This observation 

occurs because the minimum warping distance results from warping around activity b 

in T2 rather than keeping a1, a2, and a3 together (Fig. 1(c)) [5][7]. Our modified trace 



alignment algorithm addresses this problem by introducing a time-scale distortion 

penalty into the alignment algorithm. In addition to modifying the trace alignment 

algorithm, we also customized several existing metrics for evaluating alignment 

algorithms, such as the sum-of-pairs score for evaluating alignment accuracy [17]. 

The rest of the paper is organized as follows. Section 2 introduces our duration-

aware trace alignment algorithm. Section 3 evaluates the performance of this 

algorithm and compares the results to previous trace alignment work using two case 

studies. Section 4 concludes the paper and presents the limitations of our current 

work.  

2 Methodology 

Our duration-aware trace alignment algorithm (Fig. 2) works by: (1) sequencing of 

traces with concurrent activities, (2) computing duration-aware pairwise alignment, 

(3) building a guide tree, and (4) performing progressive alignment of multiple traces. 

2.1 Sequencing of Process Traces 

Activities in a process mining dataset (or activity log) are usually coded with 

 

Fig. 2. Duration-aware trace alignment flowchart. 
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Fig. 1. Example of aligning two traces using distortion-penalized DTW. (a) Original 

traces with activity durations. (b) Representing activities on discrete timeline where 

activity a in T1 is three time units long. (c) Alignment of the discrete time-points of 

the two traces. An optimal path found by the distortion-penalized DTW is shown by 

the solid line, which does not keep together the segments of activity a in T1. The 

expected alignment is shown by the dashed line. 
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timestamps indicating the start time and end time for each activity. Idle time may 

exist between activities and some activities may be executed concurrently with each 

other (Fig. 3(a)), e.g. a typist may be typing and reading concurrently. Because the 

trace alignment algorithm only works with linear sequences as input, the original 

traces need to be converted to linear sequences. In process mining, trace sequencing is 

performed by putting activities in ascending order of their start time (Fig. 3(b)). 

2.2 Duration-Aware Pairwise Trace Alignment 

Consider example traces 𝑇1 = {𝑎𝑏𝑐𝑑𝑑} and 𝑇2 = {𝑎𝑏𝑐𝑐𝑎𝑑}. Example alignment is: 

 1 2 3 4 5 6 7 

𝑇1: a b c - - d d 

𝑇2: a b c c a d - 

The alignment includes three types of operations: substitution, insertion and 

deletion. The insertion and deletion operations are usually referred as indel operations 

because an insertion could be considered a deletion in another trace. For example, 

columns 1, 2, 3 and 6 show that substituting an activity in one trace with the same 

type of activity in the other trace; columns 4 and 5 show insertions of activities in 𝑇2 

that do not exist 𝑇1; column 7 shows deletion of a 𝑇1 activity in 𝑇2. Substitution, 

insertion and deletion operations have associated costs, which are represented by a 

“scoring scheme” where the score is inversely proportional to the cost. 

Pairwise sequence alignment is usually solved using the Needleman Wunsch (NW) 

algorithm [4], and a variation of the classic NW was adopted for trace alignment [2]. 

We refer to this alignment as “context-based alignment” because the scores are 

derived from the sequential order of adjacent activities, i.e., the process context. 

  
Fig. 3. Two steps of sequencing the traces with concurrent activities (such as d in T1 

and c in T2) and idle times (white spaces in all three traces). (a) Example process 

traces before sequencing. (b) The same process traces after sequencing. 
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Both the NW alignment and context-based alignment algorithm align sequences 

without considering activity duration. To incorporate time information into alignment 

calculation, we introduce a time-scale distortion penalty into the trace alignment 

algorithm, which originates from Dynamic Time Warping [8]. The time distortion 

penalty is applied whenever a sequence is expanded or contracted during alignment. 

The accumulated score matrix for our duration-aware trace alignment is defined as:  

𝐹(𝑖, 𝑗)

= max {

𝐹(𝑖 − 1, 𝑗 − 1) + 𝑆(𝑇1(𝑖), 𝑇2(𝑗)) ∗  𝑑𝑑𝑝(𝑇1(𝑖), 𝑇2(𝑗))         Substitute

𝐹(𝑖 − 1, 𝑗) + 𝑔 ∗ ℎ𝑑𝑝(𝑇1(𝑖))                                                             Insert

𝐹(𝑖, 𝑗 − 1) + 𝑔 ∗  𝑣𝑑𝑝(𝑇2(𝑗))                                                            Delete

 
(1) 

where S(T1(i), T2(j)) is the score for substituting element T1(i) with T2(j), and 𝑔  
is the score for indel operations. 𝑑𝑑𝑝(𝑥, 𝑦), ℎ𝑑𝑝(𝑥), 𝑎𝑛𝑑 𝑣𝑑𝑝(𝑥)  are time-scale 

distortion-penalty functions. The initial conditions are: 𝐹(0,0) = 0, 𝐹(i, 0) =
𝐹(i − 1,0) + 𝑔 ∗ ℎ𝑑𝑝(𝑇1(𝑖) , 𝐹(0, j) =  𝐹(0, j) +  𝑔 ∗  𝑣𝑑𝑝(𝑇2(𝑗) . The diagonal 

distortion penalty (𝑑𝑑𝑝) penalizes the time distortion generated in the substitution 

operation. The horizontal distortion penalty (ℎ𝑑𝑝) penalizes the time distortion 

generated in the horizontal direction, viz. deletion operation. The vertical distortion 

penalty (𝑣𝑑𝑝) penalizes the time distortion generated in the vertical direction, viz. 

insertion operation. These three distortion penalty functions are defined as: 

ℎ𝑑𝑝(𝑇1(𝑖)) =  φ (𝑑(𝑇1(𝑖))) (2) 

𝑣𝑑𝑝(𝑇2(𝑗)) =  φ (𝑑(𝑇2(𝑗))) (3) 

𝑑𝑑𝑝(𝑇1(𝑖), 𝑇2(𝑗))

= {
𝑀𝑖𝑛 (φ (𝑑(𝑇1(𝑖))) ,φ (𝑑(𝑇2(𝑗)))) − |φ(𝑑(𝑇1(𝑖))) −  φ (𝑑(𝑇2(𝑗)))| , 𝑆(𝑇1(𝑖), 𝑇2(𝑗)) ≥ 0

φ (𝑑(𝑇1(𝑖))) +  φ (𝑑(𝑇2(𝑗)))  ,                                                                            𝑆(𝑇1(𝑖), 𝑇2(𝑗)) < 0
 

(4) 

where φ(t) is defined as the time-weighting function used to control the influence of 

activity duration, and 𝑑(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) is the duration of an activity. The duration unit is 

the same as the unit used for recording the activity. For 𝑑𝑑𝑝, we need to consider two 

scenarios. First, 𝑆(𝑇1(𝑖), 𝑇2(𝑗)) > 0 means a “match” between activities 𝑇1(𝑖) and 

𝑇2(𝑗), i.e. activities are of the same type or substitutable. In this scenario, 𝑑𝑑𝑝 is 

decided by rewarding the extent to which the durations overlap and penalizing the 

extent to which the durations differ. Second, 𝑆(𝑇1(𝑖), 𝑇2(𝑗)) < 0 means a “mismatch” 

between activities 𝑇1(𝑖)  and 𝑇2(𝑗) , i.e. 𝑇1(𝑖)  and 𝑇2(𝑗)  are incompatible and 

should not be aligned. Instead, this substitution operation should be decomposed to a 

deletion and an insertion. In this scenario, 𝑑𝑑𝑝 equals to the sum of ℎ𝑑𝑝 and 𝑣𝑑𝑝. 

Our group and others (e.g. [21]) have observed that activity duration has a 

distribution where extremely long-duration activities occur rarely. These rare long 

duration activates, however, can have a significant effect on the distortion penalty. 

We use time weighting to control the influence of activity duration. Choosing a 

proper time-weighting method is critical for the performance of our algorithm. We 

analyzed two weighting methods: linear and logarithmic weighting:  



{
φ
𝐿𝑖𝑛𝑒𝑎𝑟

(𝑑(𝑒𝑣𝑒𝑛𝑡)) =  𝑐 ∗ 𝑑(𝑒𝑣𝑒𝑛𝑡)

  φ
𝐿𝑜𝑔
 (𝑑(𝑒𝑣𝑒𝑛𝑡)) =  log𝑏(𝑑(𝑒𝑣𝑒𝑛𝑡))

 (5) 

where 𝑐 = 1 and 𝑏 = 𝑒 (base of natural logarithm. Linear weighting preserves the 

original duration information, but a problem arises when the difference between 

activity durations is large. The duration becomes the driving factor for alignment and 

the trace context is mostly ignored. In other words, long-duration activities 

“overpower” short-duration activities and dominate the alignment. Logarithmic 

weighting can mitigate this problem. 

The scoring scheme, or matrix that specifies the cost of the three operations during 

alignment in score matrix 𝐹 can be customized based on domain knowledge. If 

domain knowledge is unavailable, a simple choice would be the unit score scheme 

(match = 1, mismatch = –1, indel = –1). Once the score matrix 𝐹(𝑖, 𝑗) is constructed, 

the optimal alignment can be deduced by tracing back from lower right corner of the 

score matrix to the upper left corner choosing the neighboring cell that leads to the 

maximum score at each step (Fig. 4). 

2.3 Building the Guide Tree 

A guide tree needs to be constructed to determine the order of trace pairs to be aligned 

in the progressive iteration of multiple traces. Pairwise alignment is then performed 

from guide tree’s leaves to the root. In our approach, the guide tree is generated based 

on the hierarchical clustering algorithm (AHC) [9] with Ward’s method [10][11] 

(Fig. 5). To measure the proximity of traces, we define a new distance named 

“Duration-Aware Edit Distance”, which is derived from Edit Distance [12] (also 

called Levenshtein Distance) and includes dissimilarity between activity durations. 

 

Fig. 4. Pairwise alignment with linear duration-weighting function of traces T1, T2 

from Fig. 3. (a) Scoring matrix for the alignment. (b) The alignment result. 
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Given two traces α and β, their duration-aware edit distance tα,β can be calculated 

progressively as: 

𝑡𝛼,𝛽(𝑖, 𝑗) =

{
 
 

 
 
max(𝑖, 𝑗)                                                                      if min(i, j) = 0

min 

{
 
 

 
 𝑡𝛼,𝛽(𝑖 − 1, 𝑗 − 1) + {

𝑑𝛼(𝑖) + 𝑑𝛽(𝑗)                  if 𝛼𝑖  ≠  𝛽𝑗

|𝑑𝛼(𝑖) − 𝑑𝛽(𝑗)|                if 𝛼𝑖 = 𝛽𝑗  

𝑡𝛼,𝛽(𝑖, 𝑗 − 1) + 𝑑𝛽(𝑗)                                                               

𝑡𝛼,𝛽(𝑖 − 1, 𝑗) + 𝑑𝛼(𝑖)                                                              

 (6)  

where dα(i) and dβ(j) are the duration of ith activity in α and jth activity in β. 

2.4 Duration-Aware Multiple Trace Alignment 

Multiple trace alignment is essentially a progressive pairwise alignment process that 

aligns pairs of individual traces, as well as a trace and a profile (a temporary 

alignment result at intermediate stage of the alignment process) (Fig. 6) or two 

profiles. Because a column in a profile contains more than one activity, the 

substitution score in multiple sequence alignment is redefined as: 

𝒮(𝐶𝐴
𝑖 , 𝐶𝐵

𝑗
) =  ∑ 𝑛𝐴

𝑖 (𝑎) ∙ 𝑛𝐵
𝑗 (𝑏) ∙ 𝑆(𝑎, 𝑏) ∙

𝑎,𝑏∈𝔸

 𝑑𝑑𝑝(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (7) 

where 𝑆(𝑎, 𝑏)  denotes the substitution score of activities 𝑎, 𝑏 ; 𝔸  denotes the 

activity set of activity log; 𝑛𝐴
𝑖 (𝑎) denotes the frequency of activity 𝑎 in the column 

𝑖  of profile 𝐴 ; 𝐶𝐴
𝑖  denotes the contents of ith column of profile 𝐴 . 𝑑𝑑𝑝(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

denotes the diagonal distortion penalty calculated based on the average duration of 

activity types a and b. Similarly, the indel score of a column is redefined as:  

{
 
 

 
 ℐ( 𝐶𝐴

𝑖) =  ∑𝑓𝐴
𝑖(𝑎) ∙

𝑎∈Σ

𝑔 ∙ ℎ𝑑𝑝(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅            𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛

ℐ( 𝐶𝐴
𝑖) =  ∑𝑓𝐴

𝑖(𝑎) ∙

𝑎∈Σ

𝑔 ∙ 𝑣𝑑𝑝(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅          𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛
 (8) 

where  𝑔  is the indel score of activity a; 𝑓𝐴
𝑖(𝑎) denotes the frequency of 𝑎  in 

column 𝑖 of profile 𝐴; ℎ𝑑𝑝(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑣𝑑𝑝(𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the horizontal or vertical distortion 

penalties calculated based on the average duration of a deleted or inserted activity. 

 

Fig. 5. Guide tree that involves traces T1, T2 and T3 (thick lines) from Fig. 3. 
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3 Experimental Results 

We implemented our duration-aware trace alignment algorithm in the Java 

programming language. Due to the space limitations, we do not discuss the 

computational complexity of our algorithm, but we evaluated its performance on real 

logs and an artificially generated log. The results show that duration-aware trace 

alignment algorithm can compute and visualize an activity log of 50,000 activities 

(~1,000 traces and ~50 activities for each trace) within 25.5±1.5 seconds (mean value 

and standard deviation over 20 different runs). 

Although there are many quality-assessment approaches or metrics for biological 

sequence alignment (TCS [14], Heads-or-Tails [15], GUIDANCE [16], etc.), very few 

such metrics exist for trace alignment. We evaluated the performance of the duration-

aware alignment using two case studies and compared the results with that of previous 

research on trace alignment. 

3.1 Evaluation Criteria 

Our evaluation of alignment algorithm performance is based on the following criteria: 

1. Sum-of-pairs Score (SPS): This metric is widely used to measure the alignment 

accuracy of multiple sequences in bioinformatics [17]. To our knowledge, it has 

not been used in the context of process mining. SPS for biological sequences is 

defined as: 𝑆𝑃𝑆 = 𝑛/𝑁 where n is the number of correctly aligned residue pairs 

found in the test alignment and N is the total number of aligned residue pairs in 

 
Fig. 6. Duration-aware multiple trace alignment with linear weighting of traces T1, T2, 

T3 from Fig. 3. (a) Scoring matrix for the alignment. (b) The alignment result. 
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the reference alignment. In the context of trace alignment, the elements are 

process activities instead of biological residues. Our ground-truth alignment 

(reference alignment) was generated by medical experts who aligned the traces 

manually. 

2. Average Information Score: The information score is defined for each column of 

the alignment matrix as [2]: 1 −  𝐸/𝐸𝑚𝑎𝑥  where 𝐸𝑚𝑎𝑥  is the maximum 

entropy of a column, equal to log2(|𝔸| + 1). 𝐸 is the entropy of activities in the 

column, defined as:  𝐸 =  ∑ −𝑝𝑎 log2(𝑝𝑎)𝑎∈𝔸∪{−}  where a is an activity; 𝔸 is 

the set of activity types in the activity log; “-” denotes the gap symbol and 𝑝𝑎 is 

the probability of a’s occurrence in this column. Lower information score 

indicates sparser distribution and higher diversity of activities in a column. 

Because the purpose of alignment is to find significant information with strong 

confidence, high diversity of activities in one column is not expected. For this 

reason, higher information score indicates higher alignment quality. To reflect 

the quality of the whole alignment, we used the mean value of information 

scores of all columns. 

3. Consensus Sequence (CS): The concept of consensus sequence comes from 

bioinformatics, where it denotes a sequence of most frequent residues found in 

each column of the alignment. In process mining, the consensus sequence 

captures the most frequent activity in each column [2]. A gap could also be 

included in the consensus sequence if the corresponding column is mostly filled 

with gaps, but we are more interested in non-gap activities in the consensus 

sequence. The consensus sequence measures the alignment quality because good 

alignment algorithms should be able to discover the common activity sequences 

in a process. 

4. Alignment Matrix Length: Alignment matrix length could also reflect the quality 

of alignment. Longer alignment matrix indicates that more gaps are introduced 

into the alignment, which tends to be sparse. Good alignment is expected be 

dense with only necessary gaps included and unnecessary gaps avoided. 

5. Deviation Detection Ability: A major objective of trace alignment is to help 

diagnose the process executions, which includes the ability to identify deviations 

from common practice. These deviations were previously classified into two 

main categories, viz. omission and commission [2]. “Omission” denotes an 

activity that should exist at certain position in a trace but is missing. 

“Commission” denotes an activity that should not exist but is inserted. In 

addition, in duration-aware trace alignment we are able to observe one more type 

of deviation, viz. “abnormal duration”. Abnormal duration is present when an 

activity is either much shorter or much longer when compared to other activities 

in the same column. We did not quantify this metric but rather illustrate it by 

examples. 

Among these metrics, the sum-of-pairs score reflects alignment accuracy because it 

performs direct comparison to the reference alignment (ground truth) [17]. The 

average information score is associated with the alignment matrix length. Including 

more gaps into the alignment will not only increase the alignment matrix length, but 

may also increase the average information score. The reason is that the average 

information score increases for every column mostly filled with gaps. Based on the 

definition of information score, the information score of such columns will be high. 
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Fig. 7. (a) Reference alignment created by medical experts. (b) Context-based trace 

alignment. (c) Duration-aware trace alignment with logarithmic weights. (d) 

Duration-aware trace alignment with linear weights. Rows of the alignment were 

originally ordered according to the guide tree but we reordered them by trace-ID for 

easier comparison. (e) Consensus sequences of different alignments. 

Legend at the bottom shows the color-coding of activities. 

The boxes inside the alignment matrices labeled with numbers are discussed in text. 

1 - - - - - - A - - - - B - P - - - - - - - L R - - - - - N - - - P -

2 - - - - - - - - - - - B - P - P - - - - - L R - L - - - N - - - - -

3 - - - - - - - - - - - B - P - P - - - - - L R - - - - - N - - - - -

4 - - - - - - A - - - - B - P - P - - - - - L R - - - - - N - - - - -

5 - - - - - - A A - - - B - - - P - - - R - L - - - - - - N - - - - -

6 - - - - - - - A - - - B - P - - - - - R - L R - L - - - N - - - - -

7 - - - - - - A - - - - B P P - - - - N - - L R - - - - - - - - - - -

8 - - - - - - A A - - - B - - - P - - N R - L - - - - - - - - - - - P

9 A A B P - - A A N P - B - P - - - - - R - L - - - - - - - P - - - -

10 - - - - - - A - - - - B - P P P - - - R - L - - - - - - N - - - - -

11 - - - - - - - - - - - B - P - P - - N R - L - - - - - - - - - - - -

12 - - - - - - A A - - - B - P - - - - N R - L R - - - - - - P - - - -

13 - - - - - - A A - - - B - P - P - - N R - L - - - - - - - P - - - -

14 - - - - - - - A - - - B - P - P - - - - - - - - - - - - - - - - - -

15 - - - - - - - - - - - - - - - P - - - - - L R - - - - - - - B - - -

16 - - - - - - A A - - - B - P - - - - - - - L R - - - - - - - - - - -

17 - - - - - - - A - - - B - P - - - - N R - L - - - - - - - - B - - -

18 - - - - - - - - - - - B - P - - - - - R - L - - - - - - - - - - - -

19 - - - - - - - A - - - B - - - P - - N R R L R R L R L R - - - - - -

20 - - - - - - - A - - - B - P - - A - N R - L - - - - - - - - - - - -

21 - - - - - - A - - - - B - - - P - - - R - L R - - - - - N - - - - -

22 - - - - - - - A - - - B - P - - - - - R - L R - - - - - - - - - - -

23 - - - - - - A A - - - B - P - P - - - - - L R - - - - - - - B B - -

24 - - - - - - A A - - - B - P P P - - - R - L R - - - - - N - - - - -

25 - - - - - - - A - - B B P P - P - - N - - L R - L R - - - - - - - -

26 A A B P P P - A - - - B - - - P - - - - - L R - - - - - N - B B - -

27 - - - - - - - A - - - B - - - - - - - - - - - - - - - - - - - - - -

28 - - - - - - - A - - - B - P - - - - - - - - - - - - - - - - - - - -

29 - - - - - - - A - - - B - - - P - - N R - L - - - - - - - - B - - -

30 - - - - - - - A - - - B - P - P - - - R - - R - L - - - - - - - - -

31 - - - - - - A A - - - B - P - - - - N R - L - - - - - - - P - - - -

32 - - - - - - - A - - - B P P - - - - N - - - - - - - - - - - - - - -

33 - - - - - - A A - - - B - - - P - B N - - - - - - - - - - P - - - -

3

1

2

4

1 A - - B P - - - - - - - - - - - - - - - - - - - L - R - - - - N - P - -

2 - - - B P - P - - - - - - - - - - - - - - - - - L - R - L - - N - - - -

3 - - - B P - P - - - - - - - - - - - - - - - - - L - R - - - - N - - - -

4 - - A B P - P - - - - - - - - - - - - - - - - - L - R - - - - N - - - -

5 - A A B - - P - - - - - - - - - - - - - - R - - L - - - - - - N - - - -

6 - A - B P - - - - - - - - - - - - - - - - R - - L - R - L - - N - - - -

7 - - A B - - P - - P - - - - - - - - - - - N - - L - R - - - - - - - - -

8 A A - B - - P - - - - - N - - - - - - - - R - - L - - - - - - - - P - -

9 A A - B P - - A A - - - N P - - B P - - - R - - L P - - - - - - - - - -

10 - - A B P - P - - - - P - - - - - - - - - R - - L - - - - - - N - - - -

11 - - - B P - P - - - - - N - - - - - - - - R - - L - - - - - - - - - - -

12 A A - B P - - - - - - - N - - - - - - - - R - - L - R - - - - - - - P -

13 - A A B P - P - - - - - N - - - - - - - - R - - L - - - - - - - - - P -

14 - A - B P - P - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

15 - - - - - - P - - - - - - - - - - - - - - - - - L - R - - - - B - - - -

16 A A - B P - - - - - - - - - - - - - - - - - - - L - R - - - - - - - - -

17 - A - B P - - - - - - - N - - - - - - - - R - - L - - - - - - - - - - B

18 - - - B P - - - - - - - - - - - - - - - - R - - L - - - - - - - - - - -

19 - A - B - - P - - - - - N - - - - - R R L R - R L - R - - L R - - - - -

20 - A - B P - - A - - - - N - - - - - - - - R - - L - - - - - - - - - - -

21 - - A B - - P - - - - - - - - - - - - - - R - - L - R - - - - N - - - -

22 - A - B P - - - - - - - - - - - - - - - - R - - L - R - - - - - - - - -

23 - A A B P - P - - - - - - - - - - - - - - - - - L - R B B - - - - - - -

24 - A A B P - P - - - - P - - - - - - - - - R - - L - R - - - - N - - - -

25 - A - B - B P - - P - P N - - - - - - - L R - - L - R - - - - - - - - -

26 A A - B P - - - - - - - - P P A B - - - - - P - L - R - - - - N B - - B

27 - A - B - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

28 - A - B P ` - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

29 - A - B - - P - - - - - N - - - - - - - - R - - L - - - - - - - B - - -

30 - A - B P - P - - - - - - - - - - - - - - R - R L - - - - - - - - - - -

31 A A - B P - - - - - - - N - - - - - - - - R - - L - - - - - - - - - P -

32 - A - B - - P - - P - - N - - - - - - - - - - - - - - - - - - - - - - -

33 A A - B - - P - - - B - N - - - - - - - - - - - - - - - - - - - - - P -

1

2

3

4

1

2

4

3
Omission

Commission

Abnormal 

Duration

P  Pulse Check - Upper Extremity B  Breath Sounds Check P  Pulse Check - Lower Extremity 
L  Left Pupil Check R  Right Pupil Check N Neurologic assessment 
A Airway Assessment Verbal  A Airway Assessment Visual 

 
 



3.2 Case Study 1: Trauma Resuscitation Process 

Input Dataset Information. This dataset was obtained from trauma resuscitations 

performed at Children’s National Medical Center in Washington, DC. We videotaped 

and coded the start and end times of 8 different activity types during the initial 

evaluation of 33 injured children [18]. Resuscitation traces contained on average 7.4 

activities and lasted on average of 3.9 minutes (between 0.5 and 13 minutes). Our 

ground-truth reference alignment of activities was created manually by medical 

experts (Fig. 7(a)). 

Generating Alignment Matrix. Context-based trace alignment (Fig. 7(b)) was 

generated in ProM (http://www.promtools.org/) using the Trace Alignment Plugin 

with the recommended settings. The guide tree was constructed using maximal 

repeats as the feature set with Euclidean distance as the proximity measure and 

minimum variance as the join criteria [2]. The scoring scheme was derived based on 

the trace context [19]. The duration-aware trace alignment results (Fig. 7(c), (d)) were 

computed with the following settings. The guide tree was built using duration-aware 

edit distance to measure the trace proximity (Equation 6) and minimum variance as 

the join criteria. We assume that users may not have domain knowledge for 

generating scoring metrics, so we adopted the unit score function (Section 2.2) as our 

scoring scheme for computing alignment. The alignment results (Table 1) were 

compared based on the criteria described in Section 3.1. 

Table 1. Performance comparison of context-based alignments and duration-aware alignments 

on trauma resuscitation dataset. The best results in each row are shown in bold font. 

Algorithm: 

Metrics: 

Duration-Aware 

 (linear) 

Duration-Aware 

 (logarithmic) 

Context-

based 

Sum-of-pairs Score 0.617 0.807 0.731 

Avg. Information Score 0.870 0.863 0.848 

No. Non-gap Activities in CS 6 7 6 

Alignment Matrix Length 49 39 36 

Discussion of Performance Comparison Metrics. Our results (Table 1) show that 

the duration-aware trace alignment with logarithmic weights has the highest 

alignment accuracy with the sum-of-pairs score (0.807) based on reference alignment 

(Fig. 7(a)). This finding shows that activity duration can influence the alignment 

results and proper weighting of the duration can improve the alignment accuracy. We 

believe this improvement occurs for the following reasons: 

1. Repeated activities aligned based on typical duration for the column: When 

faced with multiple options (because of a repeated activity), duration-aware trace 

alignment chooses to align the activities with similar durations. We observed that 

most resuscitation activities had a “typical” duration. When an activity is 

repeated within a trace, the instance with the typical duration was likely 

performed similarly as the same activity in other traces. For example, several 

activities in trace 9 were repeated, so different alignments are possible. Context-

based alignment aligns the first set of repeated activities in trace 9 with the same 

activities in other traces (Fig. 7(b), box “1”), while duration-aware alignment 

aligns the second set of activities (Fig. 7(c), box “1”). Medical explanation: The 



second set of repeated activities in trace 9 is more similar to the typical 

performance as it was done by the physician assigned to this portion of the 

evaluation, rather than the first set which was done by a substituting team 

member. Another example is the two instances of “Pulse Check-Lower Extremity” 

in trace 10 (Fig. 7(b) & (c), box 2). Again, context-based alignment aligns the 

first set, while duration-aware alignment aligns the second set. Medical 

explanation: the task “Pulse Check-Lower Extremity” was repeated when the 

resident prematurely advanced to the secondary survey. A senior physician 

intervened and instructed the resident to return to the initial assessment where the 

“Pulse Check-Lower Extremity” task was repeated. 

2. Better guide tree: Another factor that influences alignment accuracy is 

misalignment, the incorrect positioning of activities. The possibility of 

misalignments increases if dissimilar traces are aligned early in the progressive 

alignment. These misalignments cannot be corrected later and can propagate into 

more alignment errors [20][22]. Because the guide tree algorithm determines the 

order of traces being aligned, the quality of guide tree is directly associated with 

the occurrence of misalignment. Compared with the feature (maximal repeats [2]) 

based distance, duration-aware edit distance, which is based on both activity type 

and activity duration, can do better in capturing the similarity of traces and 

producing a guide tree. As a result, misalignment is reduced and alignment 

accuracy improves. For example, the activity “Breath Sounds Check” in traces 15, 

17, 23, 26, 29 is well aligned in duration-aware trace alignment, but it is poorly 

aligned in the context-based alignment (Fig. 7 (a), (b), (c), block “3”). Because of 

similarity, repeat performance of “Breath Sounds Check” is captured and 

properly weighted by our duration-aware edit distance and these five traces are 

aligned early in the algorithm, with a lower risk of being misaligned according to 

the guide tree. 

In some scenarios duration-aware trace alignment may not perform well: 

1. Activity duration does not always accurately predict an anomaly: From an 

activity duration perspective, the first performance of “Airway Assessment 

Visual and Breath Sounds Check” in 26 (Fig. 7(b) & (c), box “4”) has a more 

typical duration than the second performance. The reference alignment, however 

shows that the second performance rather than the first should be aligned. The 

context-based alignment also made a mistake in this case (Fig. 7(b), box “4”). 

Medical explanation: Video review showed these tasks initially being performed 

by a substituting clinician and the second performed by the regular team member. 

2. Long-duration activities can dominate: A single long-duration activity might 

dominate over several short-duration activities which should be aligned if only 

activity type were considered (Fig. 7(d), box “5”). This situation explains why 

linear duration-aware trace alignment performs worse in some cases. This 

problem is mitigated by using logarithmic time weighting function. The 

logarithmic duration-aware alignment achieves higher accuracy than the context-

based one. 

Linear duration-aware alignment had the highest average information score, but it 

also had the longest matrix (49 columns). This matrix length is much larger than the 

other two alignment matrices (39 and 36 columns). The large matrix indicates that 



many unnecessary gaps are included into the alignment and can make visual analysis 

more difficult. 

The consensus sequences for context-based trace alignment and the two duration-

aware alignment results were similar (Fig. 7(e)). Context-based alignment had a 

consensus sequence with six non-gap activities. Linear and logarithmic duration-

aware trace alignment had six non-gap activities and seven non-gap activities 

respectively in the consensus sequence. The additional activity discovered by 

logarithmic duration-aware alignment is the second check of “Right Pupil”. Medical 

explanation: The reason for this interesting finding is unclear, but it may be because 

the examining clinicians stand on the right side of the patient and leading them to 

check the right pupil, then the left pupil, then the right pupil again on their way back. 

Deviation Detection. Like the context-based trace alignment, our duration-aware 

algorithms can discover commission and omission deviations (Fig. 7(d)). Duration-

aware alignment can also provide additional insights based on activity duration and 

can identify duration anomalies. For example, the third “Breath Sounds Check” in 

trace 26 had an abnormally long duration (Fig. 7(d)). This fact could indicate patient 

disease or clinician’s error. Medical explanation: In trace 26 the patient had an injury 

to the lungs and the physician spent extra time examining the chest to be sure the 

breath sounds were normal. 

3.3 Case Study 2: Endotracheal Intubation Process 

Input Dataset Information. The endotracheal intubation (breathing tube insertion) 

process was also reviewed using videos from Children’s National Medical. This 

dataset contained 31 cases with a total of 602 activities of 21 different types. 

Table 2. Performance comparison between context-based alignment and duration-aware 

alignment for endotracheal intubation process. The best results in each row are shown in bold. 

Algorithm: 

Metrics: 

Duration-Aware 

 (linear) 

Duration-Aware 

 (logarithmic) 

Context-

based 

Sum-of-pairs Score 0.731 0.843 0.721 

Avg. Information Score 0.918 0.919 0.899 

No. Non-gap Activities in CS 10 12 13 

Alignment Matrix Length 134 119 115 

Discussion of Performance Comparison Metrics. The results show that logarithmic 

duration-aware trace alignment achieved the highest sum-of-pairs score on this 

dataset (Table 2). The duration-aware alignment with a logarithmic time weight 

function had similar alignment matrix length but higher average information score 

compared to context-based alignment. The context-based alignment had one more 

non–gap activity “Passive Oxygen Placement” in the consensus sequence than the 

logarithmic duration-aware alignment. The linear duration-aware alignment 

performed the worst. The difference in performance between linear duration-aware 

and logarithmic duration-aware alignments shows that the logarithmic weighting 

strategy is better than linear weighting strategy in this context. 



4 Conclusions 

We implemented a novel trace alignment approach using activity duration to improve 

trace alignment accuracy. We also introduced a set of criteria to quantify trace 

alignment performance. Based on these criteria and case studies, we compared our 

algorithms with an existing trace alignment algorithm. The results showed that our 

duration-aware trace alignment achieved better alignment accuracy and provided 

more insights into deviations. Our algorithm has important limitations. First, this 

algorithm cannot handle concurrent activities. When two or more activities occur 

simultaneously, the algorithm rearranges them in a chronological order based on their 

start times. Alignment of concurrent activities is still an open research. Second, our 

duration-aware trace alignment algorithm needs activity durations as the input and 

cannot be applied on a dataset without activity duration information. Our future work 

will extend the concepts presented in this paper to improve process trace alignment by 

considering more information from the time dimension, e.g. activity start/end time, 

idle time.  
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